Semidefinite Programming Relaxations for the Quadratic Assignment Problem
نویسندگان
چکیده
Semideenite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualii-cation always fails for the primal problem. Although there is no duality gap in theory, this indicates that the relaxation cannot be solved in a numerically stable way. By exploring the geometrical structure of the relaxation, we are able to nd projected SDP relaxations. These new relaxations, and their duals, satisfy the Slater constraint qualiication, and so can be solved numerically using primal-dual interior-point methods. For one of our models, a preconditioned conjugate gradient method is used for solving the large linear systems which arise when nding the Newton direction. The preconditioner is found by exploiting the special structure of the relaxation. See e.g. 41] for a similar approach for solving SDP problems arised from the control applications. Numerical results are presented which indicate that the described methods yield at least competitive lower bounds.
منابع مشابه
Semidefinite relaxations of the quadratic assignment problem in a Lagrangian framework
In this paper, we consider partial Lagrangian relaxations of continuous quadratic formulations of the Quadratic Assignment Problem (QAP) where the assignment constraints are not relaxed. These relaxations are a theoretical limit for semidefinite relaxations of the QAP using any linearized quadratic equalities made from the assignment constraints. Using this framework, we survey and compare stan...
متن کاملExploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem
We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard, S.E. Karisch, F. Rendl. QAPLIB — a quadratic assignment problem library. Journal on Global Optimiza...
متن کاملFrom Linear to Semidefinite Programming: An Algorithm to Obtain Semidefinite Relaxations for Bivalent Quadratic Problems
In this paper, we present a simple algorithm to obtain mechanically SDP relaxations for any quadratic or linear program with bivalent variables, starting from an existing linear relaxation of the considered combinatorial problem. A significant advantage of our approach is that we obtain an improvement on the linear relaxation we start from. Moreover, we can take into account all the existing th...
متن کاملImproved semidefinite programming bounds for quadratic assignment problems with suitable symmetry
Semidefinite programming (SDP) bounds for the quadratic assignment problem (QAP) were introduced in: [Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite Programming Relaxations for the Quadratic Assignment Problem. Journal of Combinatorial Optimization, 2, 71–109, 1998.] Empirically, these bounds are often quite good in practice, but computationally demanding, even for relatively s...
متن کاملSemidefinite Programming
3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...
متن کاملA recipe for semidefinite relaxation for (0, 1)-quadratic programming - In memory of Svata Poljak
We review various relaxations of (0,1)-quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and simple way...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Optim.
دوره 2 شماره
صفحات -
تاریخ انتشار 1998